News on China's scientific and technological development.

SanWenYu

Senior Member
Registered Member
Last month I posted this news where scientists from USTC increased sensitivity of microwave field detection by orders of magnitude using diamond sensors. Now they have developed a technique to make these diamond sensors at nanoscale precision with ease.

USTC has got international patents on this technique and relevant equipments/instruments.

Please, Log in or Register to view URLs content!

Self-aligned patterning technique for fabricating high-performance diamond sensor arrays with nanoscale precision​

Abstract​

Efficient, nanoscale precision alignment of defect center creation in photonics structures in challenges the realization of high-performance photonic devices and quantum technology applications. Here, we propose a facile self-aligned patterning technique based on conventional engineering technology, with doping precision that can reach ~15 nm. We demonstrate this technique by fabricating diamond nanopillar sensor arrays with high consistency and near-optimal photon counts. The sensor array achieves high yield approaching the theoretical limit, and high efficiency for filtering sensors with different numbers of nitrogen vacancy centers. Combined with appropriate crystal orientation, the system achieves a saturated fluorescence rate of 4.34 Mcps and effective fluorescence-dependent detection sensitivity of 1800 cps−1/2 . These sensors also show enhanced spin properties in the isotope-enriched diamond. Our technique is applicable to all similar solid-state systems and could facilitate the development of parallel quantum sensing and scalable information processing.


Please, Log in or Register to view URLs content!

中国科大在高性能金刚石量子器件制备上取得重要进展

中国科学技术大学中科院微观磁共振重点实验室杜江峰、王亚等人在金刚石量子器件制备方向取得重要进展,发展了一种全新的基于自对准的光子学器件制备加工技术,可将氮-空位色心这一原子级量子传感器以纳米级精度加工到金刚石器件最佳工作位置,实现接近最优光学探测性能的量子传感器阵列。这项研究成果以“Self-aligned patterning technique for fabricating high-performance diamond sensor arrays with nanoscale precision”为题发表在《科学进展》[Sci. Adv.8, eabn9573 (2022)]上。

金刚石,俗称“钻石”,具有高硬度、高稳定性、高透光性、高热导率以及超高的禁带宽度等优异的物理化学性质,在超精密加工、光学材料以及半导体电子器件等工业领域有着广泛的应用。近十多年来,科学家发现金刚石中一种可以发光的原子尺度晶格缺陷--氮-空位色心(简称NV色心)具有极大的量子应用前景,让存在缺陷的不“完美”金刚石变得在实用性上更加“完美”。NV色心不仅可以以纳米空间分辨率对电磁场、压力等多种物理量在室温大气乃至极端环境下进行精密测量,也可以建立多体量子纠缠,用于研究量子信息等基础问题,在前沿基础科学、高科技产业等领域有重大应用价值。

制备高性能金刚石量子器件是金刚石量子信息技术实用化的关键技术。以金刚石量子传感器为例,其原理是利用器件内的NV色心将外界的微弱物理信号转换为自身荧光强度信号来进行探测,因此在不牺牲其他物理性质前提下,提高NV色心光子计数率是提升传感器性能的一个关键指标。在过去几年中,人们积极致力于开发用于提高NV色心荧光强度的金刚石微纳米光子学结构,例如固体浸没透镜、柱形波导、圆形牛眼光栅、抛物面反射器、倒置纳米锥等。但目前传统的制备技术无法精确控制微纳米结构中NV色心位置,导致器件制备效率低下,性能难以达到预期(图2(a)),其主要原因是NV色心制备工艺和金刚石结构刻蚀工艺之间的对准难题(图1左)。通常这一对准精度需要优于20纳米,方能达到光学器件理论上最优的光学性能。

针对以上难题,本工作研究团队发展了一种基于自对准策略的光子学器件加工技术,通过双层掩膜图形化工艺设计实现生成NV色心所需的氮离子注入工艺和金刚石结构刻蚀工艺的自对准,精度可以达到15纳米(图1右)。使用该技术,研究团队实现了高性能金刚石纳米柱传感阵列的制造,该纳米柱传感器可用于生物传感、纳米级磁性材料成像等前沿应用。与传统制造技术相比,器件显示出高度一致且最优的光子计数率以及接近理论预期的器件产率。通过金刚石晶体取向进一步控制荧光发射偶极方向,团队最终实现单个NV色心饱和光子计数率达到~4.34Mcps,荧光强度提升大约20倍(图2)。

该方法具有可工程化、简单且高精度的特点,不仅可批量化制备高性能金刚石量子传感器,对金刚石量子技术实用化具有重要意义,还可以应用于碳化硅、稀土离子等其他固态量子体系。相关技术与器件已申请国际专利进行保护。

中科院微观磁共振重点实验室特任副研究员王孟祺为该论文的第一作者,杜江峰院士、王亚教授为共同通讯作者。该研究得到了科技部、中科院、国家自然科学基金委和安徽省的资助。
 

SanWenYu

Senior Member
Registered Member
Chinese scientists from the Lanzhou University developed high performance membrane to separate deuterium water (D2O) from natural water (H2O) efficiently in ambient temperature and pressure. The process also not require toxic chemicals.

Commercialization of the technologies and protection by patents are underway.

Paper in English:
Please, Log in or Register to view URLs content!

Macroscopic Heterostructure Membrane of Graphene Oxide /Porous Graphene/Graphene Oxide for Selective Separation of Deuterium Water from Natural Water​

Abstract​


Deuterium water (D2O) is strategic material that is widely used in nuclear weapons, civilian nuclear energy, and scientific research. However, its content in natural water is extremely low. Therefore, the development of a room temperature technology for achieving simple, efficient, and low-cost separation of D2O from natural water is challenging. In this study, porous graphene (PG) nanosheets with “crater-like” pores were sandwiched between two layers of graphene oxide (GO) membranes to prepare a GO/PG/GO membrane with a macroscopic heterostructure, which can be used to separate D2O and H2O by pressure-driven filtration. At 25 °C, the rejection rate of D2O was approximately 97%, the selectivity of H2O/D2O was approximately 35.2, and the excellent performance could be attributed to the difference of transmembrane resistance and flow state of H2O and D2O in the confinement state. In addition, the D2O concentration in natural water was successfully enriched from 0.013% to 0.059% using only one stage and the membrane exhibited excellent structural and cycling stability. Therefore, this method did not require ultra-low temperatures, high energy supplies, complex separation equipment, or the introduction of toxic chemicals. Thus, it can be directly applied to the large-scale industrial production and removal of D2O.


News release in Chinese:
Please, Log in or Register to view URLs content!


同位素是指具有相同原子序数但质量数(或中子数)不同的核素。根据物理特性不同,同位素可分成放射性同位素和稳定性同位素。同位素的发现使人们对原子结构有了更深刻的认识,并且同位素在核技术、医疗、农业等领域中都有着无可替代的独特作用。其中,氘(D)作为氢的重要稳定同位素,由其组成的水分子被称为重水(D2O)。D2O是国防科技和核能工业的重要战略物资,在国民经济和国家安全中有着不可替代的作用。然而,传统的重水生产工艺面临生产成本高、效率低、分离条件苛刻、分离流程复杂、需要有毒有害气体的引入等问题,因此发展一种常温常压下简单、快速、高效的重水分离技术具有重要的理论意义和广阔的应用前景。此外在日益严峻的国际环境下,对进口重水及国外技术的高度依赖已对我国造成了较大影响,亟需发展一种更为先进的、具有自主知识产权的重水生产技术,以保证我国国防、工业、医疗等领域的使用需求,从而解决自主化高效生产重水的“卡脖子”难题。

近日,兰州大学稀有同位素前沿科学中心、核科学与技术学院陈熙萌/李湛团队通过开发了一种具有全新结构的氧化石墨烯/纳孔石墨烯宏观异质结膜,将其成功用于天然水中氘水的简单、快速、高效膜分离,其分离性能远超现有技术,具有工业化应用潜力。文章发表在国际期刊《先进材料》(Advanced Materials),并入选编辑精选(Editor’s Choice)。

通过前期基于石墨烯材料的构筑以及在分离分析应用的探究,研究团队将一种具有“火山口状”孔隙的多孔石墨烯(PG)纳米片夹在两层GO膜之间,制备出具有宏观异质结构的GO/PG/GO膜,并在常温常压下实现对D2O的高选择性筛分。其中,以具有丰富孔隙的PG为筛分单元、GO膜为流量调节单元,利用GO的层间π-π相互作用力将具有丰富筛分位点的PG在外压的作用下合成一种稳定的类书本状多层堆积膜,能够有效调节溶液在膜层间的流动速度,以便增加氘水分子与PG层间选择性作用位点接触几率,进而实现氢氘水分子之间的选择性高效分离。将该膜用于D2O和H2O分离后,表现超高的分离因子,以及优异的可逆性、超低能耗和长期稳定性,分离能耗仅为3.6 GJ/kg,综合分离性能远超现有技术。通过一系列机理探究实验及相关理论计算后发现,GO/PG/GO膜优异对于氢氘水的优异分离性能主要源于石墨烯层间的限域核量子效应和同位素交换等都多因素的耦合作用。此外,利用简单的分离设备仅通过一级分离就可以成功将天然水中的D2O浓度从0.013%富集到0.059%。因此,这种低能耗、绿色环保、简单快速的膜分离技术有效解决了氢同位素分离的技术瓶颈,为近些年来分离科学领域的突破性进展。

该工作将负压膜分离技术引入了同位素分离领域,摆脱了现有分离技术中必需的超低温条件和复杂流程,无添加剂和危险有害物质的引入,极具工业化应用潜力。此外该技术具有自主知识产权,有利于解决重水生产中的“卡脖子”难题。该项目已经申请发明专利(202211002520.9),并与华中科技大学、武汉迪特姆科技有限公司合作开展医用低氘水生产设备的研发,已取得初步的成果。
 

sunnymaxi

Captain
Registered Member
Please, Log in or Register to view URLs content!

China owns over 3 mln domestic valid invention patents​


BEIJING, Oct. 9 (Xinhua) -- The number of valid invention patents on the Chinese mainland has exceeded 3 million, with a rising proportion in the field of digital technologies, the National Intellectual Property Administration said on Sunday.

As of September, there were over 3.15 million valid invention patents held on the Chinese mainland, said Ge Shu, an official with the administration, at a press conference.

More than 30 percent of the Chinese patents belonged to strategic emerging industries, such as new energy vehicles, digital creativity, and high-end equipment manufacturing, and 13 percent have a patent term of over 10 years, according to the official.

As of July, 326,000 Chinese enterprises were holding 2.09 million valid invention patents.

Ge stressed the growth of patents in the field of digital technologies, saying that computer technology, measurements, and digital communications were the top three industries in the number of valid invention patents in China as of July.

The patent number has further enhanced China's international status as an innovation power, Ge said.
 
Top